Sistemi di monitoraggio GNSS di strutture, infrastrutture e territorio: uno Standard

Fernando Sansò, Ludovico Biagi, Stefano Caldera, Lisa Pertusini

Abstract


In the frame of deformation monitoring of structures, infrastructures
and natural hazards, in this paper several examples are provided, that demonstrate how GNSS observations, even if taken by low cost receivers,
are competitive in terms of accuracy with classic techniques. Moreover
GNSS observations are able to provide a continuous determination of
the position of N points in time, in a fully automated way, interconnecting
points that are not visible each other, in all weather conditions.
This work presents how a low cost GNSS monitoring system can be
designed and implemented, both in terms of hardware and software solutions.
Then the analysis of GNSS data is shown, describing the consecutive
steps of preprocessing, processing and validation of the results.
Because deformation monitoring basically means detecting anomalous
changes in the time series of each GNSS station, an efficient alarm system
is designed and described.
In the end ten basic requirements are identified, which guarantee that
the deformation monitoring performed with GNSS can be effective and
convenient.


Full Text

PDF

Riferimenti bibliografici


Barbarella, Radicioni & Sansò editori (2009) Lo sviluppo delle tecnologie per le reti geodetiche, Perugia: Grafiche Bovini

Benedetti E., Biagi L., Branzanti M., Colosimo G., Mazzoni A. &

Crespi M. (2014) GNSS seismology for the 2012 Mw = 6.1 Emilia

Earthquake: exploiting the VADASE algorithm, Seismological Research Letters, Vol. 85, Num. 3, 649-656

Biagi L., I fondamentali del GPS, Geomatics Workbooks N8, http://geomatica.como.polimi.it/workbooks/

Biagi L. & Caldera S. (2011) The automation of permanent networks

monitoring: remarks and case studies, Applied Geomatics: Vol. 3, Issue 3, 137-152

Biagi L., Catalin F. G. & Negretti M. (2016). Low-Cost GNSS

Receivers for Local Monitoring: Experimental Simulation, and Analysis

of Displacements. Sensors, vol. 16, 1-13

Böhm J. & Schuh H. (2003). Vienna mapping functions, Vienna: na.

Caldera S., Realini E., Barzaghi R., Reguzzoni M. & Sansò, F. (2016)

Experimental Study on Low-Cost Satellite-Based Geodetic Monitoring

over Short Baselines, J. Surv. Eng., 142, 3.

Cina A. (2014) Dal GPS al GNSS (Global Navigation Satellite System). Torino: Per la geomatica. CELID

Dach R., Lutz S., Walser P. & Fridez, P. (2015) Bernese GPS Software

Version 5.2. Documentation; Astronomical Institute: University of Bern, Switzerland

Gogoi N., Manzino A.M., Cina A. & P Dabove P. (2018) Fast

Deformation Detection with mass market GNSS time differential

observations and use of baseline constraints, GEAM-Geoingegneria

ambientale e mineraria- Geoengineering Environment and mining, 152, 32-39

Leick, A., Rapoport, L. & Tatarnikov, D. (2015). GPS satellite surveying. John Wiley & Sons.

Niell A. E. (2001), Preliminary evaluation of atmospheric mapping

functions based on numerical weather models, Phys. Chem. Earth, 26, 475–480.

Realini E. & Reguzzoni M. (2013) goGPS: open source software for

enhancing the accuracy of low-cost receivers by single-frequency relative kinematic positioning, Measurement Science and Technology 24 (11), 115010

Rothacher (2001) M. Comparison of Absolute and Relative Antenna

Phase Center Variations. GPS Solutions 4(4), 55 – 60

Sansò F. (1997) Il trattamento statistico dei dati, Milano: Città Studi ed. Tagliaferro,

G., Caldera, S., Realini, E., Molinari, D. & Pasqui, L. (2018) GeoGuard: low-cost GNSS technologies for the continuous

monitoring of structures and land movements. In EGU General

Assembly Conference Abstracts, Vol. 20, 13898

Teunissen P. & Montenbruck O. eds. (2017). Springer handbook of global navigation satellite systems. Springer.




DOI: http://dx.doi.org/10.48258/geo.v22i4.1586

Refback

  • Non ci sono refbacks, per ora.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.