Fotogrammetria diretta con RPAS


  • Filiberto Chiabrando Politecnico di Torino DIATI, Duca degli Abruzzi 24, Torino
  • Andrea Lingua Politecnico di Torino DIATI, Duca degli Abruzzi 24, Torino
  • Marco Piras Politecnico di Torino DIATI, Duca degli Abruzzi 24, Torino

Parole chiave:

fotogrammetria diretta, GNSS/INS, MEMS, DTM/DSM, UAV


Nowadays, the RPAS (Remotely Piloted Aircraft Systems) or UAV (Unmanned Aerial Vehicle) are often used, with onboard calibrated digital camera for photogrammetric purpose such as DTM and DSM, orthophotos and map realization etc., combining the digital images with a minimum sufficient number of ground control points using semiautomatic image-matching techniques combined with traditional bundle-block approach (Barazzetti et al, 2012;. Chiabrando et al, 2012; Haala et al, 2011;. Lingua et al 2008;. Remondino et al., 2011).
In this case, the RPAS performances allows to obtain high quality product , considering the pixel size and the accuracy of the DTM/DSM which could be obtained with automatic procedures. This is a good condition for semi-automatic procedure using a bundle-block photogrammetric approach. But is it possible to realize a direct photogrammetry? And what are the limits? Several navigation sensors (GPS/GNSS e IMU-MEMS) are embedded onto RPAS in order to realize an autonomous flight. The quality of these sensors, in term of accuracy, depends on the model of RPAS and its purpose. The navigation solution (position and attitude) is estimated by the internal RPAS sensor and can be employed to directly georeferencing
the images, in order to produce an easy and quick description and analysis of the overlooked area. In this paper, the authors describes an investigation over the limits of some commercial RPASs, defining a dedicated procedure to valuate their performance, especially considering the use of RPAS for direct photogrammetry. The first results encourage the use of RPAS for geomatic applications, because the cost and the quality of the obtained product are quite interesting.

Riferimenti bibliografici

Barazzetti, L., Remondino, F., Scaioni, M., Brumana, R., 2012. Fully automatic UAV image-based sensor orientation, IAPRS&SIS, Beijing (China). Bendea, H., Chiabrando, F., Giulio Tonolo, F., Marenchino, D., 2007. Mapping of archaeological areas using a low-cost UAV. The Augusta Bagiennorum test site. XXI CIPA International Symposium, Athens, Greece, 1–6 October 2007.

Blaha, M., Eisenbeiss, H., Grimm, D., Limpach, P., 2011. Direct georeferencing of UAVs. Proceedings of the International Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g), Zurich, Switzerland, Vol. XXXVIII-1/C22.

Chiabrando, F., Lingua, A., Rinaudo, F., Spano, A., 2012. Archaeological site monitoring: UAV photogrammetry can be an answer.ISPRS Archives,Vol. XXXIX, no. B5, pp. 583–588.

Coppa, U., Guarnieri, A., Pirotti, F., Vettore, A., 2009. Accuracy enhancement of unmanned helicopter positioning with low cost system. Applied Geomatics, 1(3), pp. 85–95.

Haala, N., Cramer, M., Weimer, F., Trittler, M., 2011. Performance test on UAV-based photogrammetric data collection. In: ISPRS Archives, Vol. XXXVIII–1/C22.

Lingua, A., Marenchino, D., Nex, F., 2009. Automatic Digital Surface Model (DSM) generation procedure from images acquired by Unmanned Aerial Systems. Proceedings of GeoCad 2009, Alba Iulia, Romania.

Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., Sarazzi, D., 2011. UAV photogrammetry for mapping and 3d modeling – current status and future perspectives.Proceedings of the International Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g), Zurich, Switzerland, Vol. XXXVIII-1/C22.




Come citare

Chiabrando, F., Lingua, A., & Piras, M. (2015). Fotogrammetria diretta con RPAS. GEOmedia, 19(1). Recuperato da




Puoi leggere altri articoli dello stesso autore/i